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Synthesis of 1-aminoimidazolidin-4-one and
1-aminoimidazolidin-2-one based compounds:

an interesting divergence in methodology
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Abstract—An examination of the methods required for the amination of 2- and 4-imidazolidinones is described.
� 2006 Published by Elsevier Ltd.
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Imidazolidinones constitute a class of heterocyclic
compounds with wide ranging biological activities. The
2-imidazolidinone and 4-imidazolidinone scaffolds can
be found in compounds with CCR3 and 5-HT2c receptor
antagonists activity,1 angiogenic,2 and antibacterial3

properties, and in phosphodiesterase inhibitors.4 We
recently became interested in both of these scaffolds
as part of our ongoing efforts to explore diverse chemi-
cal space for drug discovery. We were particularly
interested in the preparation of the aza analogs of
both of these structures, as very few examples have been
reported to date. The majority of the literature in this
area is focused on aminohydantoins. Further, the direct
aminations of the parent 2- and 4-imidazolidinones have
not been reported to date, nor have the reduction of the
corresponding N-nitroso compounds.

We chose to explore the methods for amination of these
compounds with two simple model systems (1 and 2),
both of which could be prepared from readily available
materials. Thus, for the preparation of 1, N-Boc glycine
(3) was converted to the amide via EDCI coupling with
the 4-methoxyphenethyl amine. Deprotection with
TFA, followed by condensation with 4-tert-butyl benz-
aldehyde in the presence of cesium carbonate provided
1 (Scheme 1).
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Preparation of the 2-imidazolidinone 2 was slightly
more complicated. 4-tert-Butyl benzaldehyde (4) was
converted to the nitro alkene, which readily underwent
a Michael condensation with 4-methoxyphenethyl
amine. Reduction with zinc dust to the diamine,5 followed
by cyclization with carbonyldiimidazole provided 2, the
second test substrate (Scheme 2).

Our initial investigations focused on the amination of
the 2-imidazolidinones. Nitrosation of this scaffold was
readily accomplished by treatment of 2 with sodium ni-
trite in glacial acetic acid at room temperature. Reduc-
tion to the desired product, 5, was then accomplished
with the addition of zinc dust at 8–15 �C (83%, Scheme
3).6 Control of the temperature during the zinc addition
was critical to maintain selectivity and avoid formation
of the original starting material, 2, via N–N bond reduction.
Scheme 1. Reagents and conditions: (a) EDCI, 4-OMe phenethyl-
amine, CH2Cl2, (b) TFA/CH2Cl2 1/1, (c) 4-t-butylbenzaldehyde,
Cs2CO3, MeOH, 60 �C.
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Scheme 3. Reagents and conditions: (a) NaNO2, AcOH, 25 �C, (b)
AcOH, Zn, 8–15 �C.
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Scheme 2. Reagents and conditions: (a) CH3NO2, NH4OAc, AcOH,
reflux, (b) 4-OMe phenethylamine, THF, rt, (c) Zn, HCl, EtOH, (d)
CDI, DMF, 50 �C.
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We then turned our attention to the 4-imidazolidinone
scaffold. While the nitrosation of 1 was accomplished
using similar conditions to the 2-imidazolidinone scaf-
fold, we were surprised to discover that reduction to
the amine was far more difficult. In our hands, the
zinc/acetic acid method employed for the reduction of
the 2-nitroso-2-imidazolidinone was not selective in the
4-imidazolidinone series. The only product observed in
the 4-imidazolidinone class was the original starting
material, 1, a result of reduction of the N–N bond.
Similar results were observed with palladium on carbon
and hydrogen, palladium on alumina and hydrogen, and
titanium trichloride. Further, tin chloride in a variety of
solvents, both with and without microwave irradiation,
left the nitroso compound unchanged. Similar results
were observed with sodium borohydride, sodium cyano-
borohydride, and even lithium aluminum hydride.7 All
of these procedures have been previously reported
to be effective in the reduction of various nitroso
compounds without concomitant reduction of the
N–N bond. To our surprise, the only conditions that
produced reasonable quantities of the desired 1-amino-
imidazolidin-4-one (6) was reduction with zinc dust in
the presence of ammonium chloride at 80 �C for
10 min with microwave irradiation (72%, Scheme 4).8
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Scheme 4. Reagents and conditions: (a) NaNO2, AcOH, MeOH, 0 �C,
(b) Zn, NH4Cl, MeOH.
The interesting difference in selectivity between these
two apparently similar ring systems is not easily ex-
plained. One could argue that the 4-imidazolidinone
ring system contains a basic nitrogen that may be pro-
tonated under acidic conditions, thus activating the
N–N bond to reductive cleavage. However, reports
in the literature of successful, selective reduction of
other N-nitroso systems to the corresponding N-amino
compound suggest that protonation alone cannot
explain the difference reported here. The empirical
observation that hydride reagents fail to produce the
desired product, 6, and that hydrogenation conditions
are not selective for nitroso reduction versus N–N bond
cleavage is also a surprising and unexplained result.

In summary we have developed a method for the
preparation of the previously unknown 1-amino imidazo-
lidin-4-one and 1-aminoimidazolidin-2-one based struc-
tures from the parent imidazolidinone core in good
yield. We have further demonstrated that the nature of
the reductive conditions employed is critical to the
successful formation of the desired products.
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